

LIFECARE CONFIRMS REPRODUCIBLE IMPLANT TRACKS GLUCOSE IN VIVO

Bergen, Norway, 8 January 2026 - Lifecare ASA (LIFE) today announces a major system-level milestone, reporting the first in-vivo confirmation that its fully integrated implantable Continuous Glucose Monitoring (CGM) system functions as intended, using implants from the company's first reproducibly manufactured production batch.

In practical terms, this means Lifecare's implant has now been shown to track glucose inside a living body using reproducibly manufactured implants, without relying on laboratory conditions or external calibration.

The results were generated in Lifecare's ongoing longevity study LFC-SEN-002 and represent the first real-life operation of the company's complete implant architecture in living tissue, combining manufacturing reproducibility, biological compatibility and system-level functionality in a single in-vivo deployment.

First in-vivo operation of fully functional dual-cavity implant

The latest implantation marks the first in-vivo deployment of a fully functional wireless dual-cavity implant, in which both the glucose-reactive cavity and the reference cavity operate simultaneously in living tissue as designed. The implant was produced, tested, sterilised and cleared for implantation in December 2025 as part of Lifecare's first reproducibly manufactured batch under the company's current production protocol.

This milestone represents a decisive transition from component-level and laboratory validation to system-level execution in vivo, confirming that Lifecare's implantable CGM system can be manufactured reproducibly and function coherently in a real biological environment.

Raw in-vivo signals behave coherently without calibration or correction

Early data collected following implantation show that the implant produces coherent and physiologically plausible signal behaviour in vivo. No calibration, smoothing, filtering, or post-hoc correction has been applied. Nevertheless, the raw sensor output demonstrates directional signal variations consistent with changes in glucose levels, benchmarked against reference data from a commercially available CGM system.

These observations are derived exclusively from unprocessed raw data. No claims are made at this stage regarding numerical glucose accuracy, clinical performance, or diagnostic use. The purpose of the current phase of LFC-SEN-002 is to confirm system integrity, biological compatibility and functional behaviour of the fully integrated implant architecture under real-life conditions.

"This is the first time we see our full implant architecture operating over time *in vivo* exactly as designed, using implants from our first reproducibly manufactured batch," says Joacim Holter, CEO of Lifecare. "The observed signal behaviour mirrors what we previously demonstrated in human proof-of-concept results with wired sensors - now realised in a fully integrated, wireless implant. This reconfirms the sensing principle in living tissue and marks a clear transition from feasibility to optimisation and performance refinement."

Clear system confirmation; optimisation remains

The findings from this phase of LFC-SEN-002 confirm that:

- the implant architecture functions coherently *in vivo*,
- the sensing principle behaves as expected in a wireless living system, and
- the remaining development focus is on system optimisation, stability and refinement.

The study continues to generate data supporting:

- further optimisation of system stability and signal isolation,
- preparation for veterinary market entry, and
- Lifecare's regulatory pathway towards first-in-human clinical studies and CE marking.

About LFC-SEN-002

LFC-SEN-002 is an ongoing longevity and performance study evaluating Lifecare's implantable CGM technology in dogs. The study focuses on biocompatibility, system stability and *in-vivo* signal behaviour, and supports both veterinary product development and future human clinical programs. The study is conducted under veterinary supervision in cooperation with the Faculty of Veterinary Medicine, Department of Companion Animal Clinical Sciences at the Norwegian University of Life Sciences. Data generated in the study provide direct input to Lifecare's ongoing development and execution program.

About us

Lifecare ASA is a medical sensor company developing technology for sensing and monitoring of various body analytes. Lifecare's focus is to bring the next generation of Continuous Glucose Monitoring systems to market. Lifecare enables osmotic pressure as sensing principle. Lifecare's sensor technology is suitable for identifying and monitoring the occurrence of a wide range of analytes and molecules in the human body and in pets.

Contacts

For further information, please contact:

Joacim Holter, CEO, joacim.holter@lifecare.no, +47 40 05 90 40

Renete Kaarvik, CFO, renete.kaarvik@lifecare.no, +47 94 83 82 42