

DEGOLYER AND MACNAUGHTON

5001 Spring Valley Road Suite 800 East Dallas, Texas 75244

February 28, 2017

Eni S.p.A.
Pietro G. Consonni
Vice President, Reserves
Via Emilia 1
20097 San Donato Milanese
Milano, Italy

Dear Mr. Consonni:

Pursuant to your request, we have conducted an independent evaluation to serve as a reserves audit of the net proved oil, condensate, liquefied petroleum gas (LPG), and gas reserves, as of December 31, 2016, of certain properties in Africa, Asia, and Europe in which Eni S.p.A. (Eni) has represented that it owns an interest. This evaluation was completed on February 28, 2017. Eni has represented that these properties account for 29 percent, on a net equivalent barrel basis, of Eni's net proved reserves as of December 31, 2016, and that Eni's net proved reserves estimates have been prepared in accordance with the reserves definitions of Rules 4-10(a) (1)-(32) of Regulation S-X of the Securities and Exchange Commission (SEC) of the United States. It is our opinion that the procedures and methodologies employed by Eni for the preparation of their proved reserves evaluation as of December 31, 2016, comply with the current requirements of the SEC. We have reviewed information provided to us by Eni that it represents to be Eni's estimates of the net reserves, as of December 31, 2016, for the same properties as those which we have independently evaluated. This report was prepared in accordance with guidelines specified in Item 1202 (a)(8) of Regulation S-K and is to be used for inclusion in certain SEC filings by Eni.

Reserves estimates included herein are expressed as net reserves as represented by Eni. Gross reserves are defined as the total estimated petroleum to be produced from these properties after December 31, 2016. Net reserves are defined as that portion of the gross reserves attributable to the interests owned by Eni after deducting interests owned by others.

Estimates of oil, condensate, LPG, and gas should be regarded only as estimates that may change as further production history and additional information become available. Not only are such reserves estimates based on that information which is currently available, but such estimates are also subject to the uncertainties inherent in the application of judgmental factors in interpreting such information.

Data used in this audit were obtained from reviews with Eni personnel, from Eni files, from records on file with the appropriate regulatory agencies, and from public sources. In the preparation of this report we have relied, without independent verification, upon such information furnished by Eni with respect to property interests, production from such properties, current costs of operation and development, current prices for production, agreements relating to current and future operations and sale of production, and various other information and data that were accepted as represented. A field examination of the properties was not considered necessary for the purposes of this report.

Methodology and Procedures

Estimates of reserves were prepared by the use of appropriate geologic, petroleum engineering, and evaluation principles and techniques that are in accordance with practices generally recognized by the petroleum industry as presented in the publication of the Society of Petroleum Engineers entitled "Standards Pertaining to the Estimating and Auditing of Oil and Gas Reserves Information (Revision as of February 19, 2007)." The method or combination of methods used in the analysis of each reservoir was tempered by experience with similar reservoirs, stage of development, quality and completeness of basic data, and production history.

Based on the current stage of field development, the development plans provided by Eni, and the analyses of areas offsetting existing wells, reserves were classified as proved.

When applicable, the volumetric method was used to estimate the original oil in place (OOIP) and the original gas in place (OGIP). Structure and isopach maps were constructed to estimate reservoir volume. Electrical logs, radioactivity logs, core analyses, and other available data were used to prepare these maps as well as to estimate representative values for porosity and water saturation. When adequate data were available and when circumstances justified, material-balance and other engineering methods were used to estimate OOIP or OGIP.

Estimates of ultimate recovery were obtained after applying recovery factors to OOIP or OGIP. These recovery factors were based on consideration of the type of energy inherent in the reservoirs, analyses of the petroleum, the structural positions of the properties, and the production histories. When applicable, material-balance and other engineering methods were used to estimate recovery factors. In these instances, an analysis of reservoir performance, including production rate, reservoir pressure, and gas-oil ratio behavior, was used in the estimation of reserves.

For depletion-type reservoirs or those whose performance disclosed a reliable decline in producing-rate trends or other diagnostic characteristics, reserves were estimated by the application of appropriate decline curves or other performance relationships. In the analyses of production-decline curves, reserves were estimated only to the limits of economic production or to the limit of production licenses as appropriate.

In certain cases, elements of the reserves estimates incorporated information based on analogy with similar reservoirs for which more complete data were available.

Eni has represented that its estimates of oil, condensate, and LPG reserves are reported as a summed quantity, since there is no material effect in reporting the quantities separately.

Definition of Reserves

Petroleum reserves included in this report are classified as proved. Reserves classifications used for our estimates of proved reserves are in accordance with the reserves definitions of Rules 4–10(a) (1)–(32) of Regulation S–X of the SEC. Eni has represented that its estimates of proved reserves are in accordance with the reserves definitions of Rules 4–10(a) (1)–(32) of Regulation S–X of the SEC. Reserves are judged to be economically producible in future years from known reservoirs under existing economic and operating conditions and assuming continuation of current regulatory practices using known production methods and equipment. In the analyses of production-decline curves, reserves were estimated only to the limit of economic rates of production under existing economic and operating conditions using prices and costs consistent with the effective date of this report, including consideration of changes in existing prices provided only by contractual arrangements but not including escalations based upon future conditions. The petroleum reserves are classified as follows:

Proved oil and gas reserves – Proved oil and gas reserves are those quantities of oil and gas, which, by analysis of geoscience and engineering data, can be estimated with reasonable certainty to be economically producible—from a given date forward, from known reservoirs, and under existing economic conditions, operating methods, and government regulations—prior to the time at which contracts providing the right to operate expire, unless evidence indicates that renewal is reasonably certain, regardless of whether deterministic or probabilistic methods are used for the estimation. The project to extract the hydrocarbons must have commenced or the operator must be reasonably certain that it will commence the project within a reasonable time.

- (i) The area of the reservoir considered as proved includes:
- (A) The area identified by drilling and limited by fluid contacts, if any, and (B) Adjacent undrilled portions of the reservoir that can, with reasonable certainty, be judged to be continuous with it and to contain economically producible oil or gas on the basis of available geoscience and engineering data.
- (ii) In the absence of data on fluid contacts, proved quantities in a reservoir are limited by the lowest known hydrocarbons (LKH) as seen in a well penetration unless geoscience, engineering, or performance data and reliable technology establishes a lower contact with reasonable certainty.
- (iii) Where direct observation from well penetrations has defined a highest known oil (HKO) elevation and the potential exists for an associated gas cap, proved oil reserves may be assigned in the structurally higher portions of the reservoir only if geoscience, engineering, or performance data and reliable technology establish the higher contact with reasonable certainty.
- (iv) Reserves which can be produced economically through application of improved recovery techniques (including, but not limited to, fluid injection) are included in the proved classification when:

- (A) Successful testing by a pilot project in an area of the reservoir with properties no more favorable than in the reservoir as a whole, the operation of an installed program in the reservoir or an analogous reservoir, or other evidence using reliable technology establishes the reasonable certainty of the engineering analysis on which the project or program was based; and (B) The project has been approved for development by all necessary parties and entities, including governmental entities.
- (v) Existing economic conditions include prices and costs at which economic producibility from a reservoir is to be determined. The price shall be the average price during the 12-month period prior to the ending date of the period covered by the report, determined as an unweighted arithmetic average of the first-day-of-the-month price for each month within such period, unless prices are defined by contractual arrangements, excluding escalations based upon future conditions.

Developed oil and gas reserves – Developed oil and gas reserves are reserves of any category that can be expected to be recovered:

- (i) Through existing wells with existing equipment and operating methods or in which the cost of the required equipment is relatively minor compared to the cost of a new well; and
- (ii) Through installed extraction equipment and infrastructure operational at the time of the reserves estimate if the extraction is by means not involving a well.

Undeveloped oil and gas reserves — Undeveloped oil and gas reserves are reserves of any category that are expected to be recovered from new wells on undrilled acreage, or from existing wells where a relatively major expenditure is required for recompletion.

(i) Reserves on undrilled acreage shall be limited to those directly offsetting development spacing areas that are reasonably certain of production when drilled, unless evidence using reliable technology exists that establishes reasonable certainty of economic producibility at greater distances.

- (ii) Undrilled locations can be classified as having undeveloped reserves only if a development plan has been adopted indicating that they are scheduled to be drilled within five years, unless the specific circumstances justify a longer time.
- (iii) Under no circumstances shall estimates for undeveloped reserves be attributable to any acreage for which an application of fluid injection or other improved recovery technique is contemplated, unless such techniques have been proved effective by actual projects in the same reservoir or an analogous reservoir, as defined in [section 210.4–10 (a) Definitions], or by other evidence using reliable technology establishing reasonable certainty.

Primary Economic Assumptions

The following economic assumptions were used for estimating existing and future prices and costs, expressed in United States dollars (U.S.\$):

Oil, Condensate, and LPG Prices

Eni provided all pricing information, and it has represented that the provided oil, condensate, and LPG prices were based on a reference price, calculated as the unweighted arithmetic average of the first-day-of-the-month price for each month within the 12-month period prior to the end of the reporting period, unless prices are defined by contractual arrangements. A Brent oil price of U.S.\$42.80 per barrel was the resulting reference price. Where appropriate, Eni supplied differentials by field to the relevant reference price, and the prices were held constant thereafter. The volume-weighted average oil, condensate, and LPG prices used in this report are presented below, expressed in United States dollars per barrel (U.S.\$/bbl):

	Oil (U.S.\$/bbl)	Condensate and LPG (U.S.\$/bbl)
Africa	40.89	35.98
Asia	N/A	42.43
Europe	N/A	35.88

Average for Total Note: "N/A" is Not Applicable.

Gas Prices

Eni has represented that the provided gas prices were based on a reference price, calculated as the unweighted arithmetic average of the first-day-of-the-month price for each month within the 12-month period prior to the end of the reporting period, unless prices are defined by contractual arrangements. A significant quantity of the gas sold by Eni is subject to contract prices, and the range of such prices is varied. A reference price is the United Kingdom National Balancing Point Index, which was U.S.\$4.79 per thousand cubic feet. Where appropriate, Eni supplied differentials by field to the relevant reference price and the prices were held constant thereafter. The volume-weighted average gas prices used in this report are presented below, expressed in United States dollars per thousand cubic feet (U.S.\$/Mcf):

	Gas (U.S.\$/Mcf)	
Africa	4.62	
Asia	3.53	
Europe	5.07	

Average for Total

Operating Expenses and Capital Costs

Operating expenses and capital costs, based on information provided by Eni, were used in estimating future costs required to operate the properties. In certain cases, future costs, either higher or lower than existing costs, may have been used because of anticipated changes in operating conditions. These costs were not escalated for inflation.

While the oil and gas industry may be subject to regulatory changes from time to time that could affect an industry participant's ability to recover its oil, condensate, LPG, and gas reserves, we are not aware of any such governmental actions which would restrict the recovery of the oil, condensate, LPG, and gas reserves as of December 31, 2016, estimated herein.

Eni has represented that its estimated net proved reserves attributable to the reviewed properties in Africa, Asia, and Europe were based on the definitions of proved reserves of the SEC. Eni has represented that its estimates of the net proved reserves attributable to these properties, which represent 29 percent of Eni's net reserves on a net equivalent basis, are summarized as follows, expressed in millions of barrels (MMbbl), billions of cubic feet (Bcf), and millions of barrels of oil equivalent (MMboe):

Estin	nated by	Eni
Net Pro	oved Res	serves
as of De	cember :	31, 2016
Oil,		
Condensate,		Oil
and LPG	Gos	Equivalent

(MMboe) (MMbbl) (Bcf)

Properties reviewed by DeGolyer and MacNaughton

Total Proved

402.0 9,607.4 2.162.2

Note: Gas is converted to oil equivalent using a factor of 5,458 cubic feet of gas per 1 barrel of oil equivalent based on energy equivalency.

In our opinion, the information relating to estimated proved reserves of oil, condensate, LPG, and gas contained in this report has been prepared in accordance with Paragraphs 932-235-50-4, 932-235-50-6, 932-235-50-7, and 932-235-50-9 of the Accounting Standards Update 932-235-50, Extractive Industries - Oil and Gas (Topic 932): Oil and Gas Reserve Estimation and Disclosures (January 2010) of the Financial Accounting Standards Board and Rules 4-10(a) (1)-(32) of Regulation S-X and Rules 302(b), 1201, and 1202(a) (1), (2), (3), (4), (8) of Regulation S-K of the Securities and Exchange Commission; provided, however, that estimates of proved developed and proved undeveloped reserves are not presented at the beginning of the year.

To the extent the above-enumerated rules, regulations, and statements require determinations of an accounting or legal nature, we, as engineers, are necessarily unable to express an opinion as to whether the above-described information is in accordance therewith or sufficient therefor.

In comparing the detailed net proved reserves estimates prepared by us and by Eni, we have found differences, both positive and negative, resulting in an aggregate difference of less than 6 percent when compared on the basis of net equivalent barrels. It is our opinion that the net proved reserves estimates prepared by Eni on the properties reviewed by us and referred to above, when compared on the basis of net equivalent barrels, in aggregate, are reasonable.

DeGolyer and MacNaughton is an independent petroleum engineering consulting firm that has been providing petroleum consulting services throughout the world since 1936. DeGolyer and MacNaughton does not have any financial interest, including stock ownership, in Eni. Our fees were not contingent on the results of our evaluation. This letter report has been prepared at the request of Eni. DeGolyer and MacNaughton has used all assumptions, data, procedures, and methods that it considers necessary and appropriate to prepare this report.

Submitted.

DeGOLYER and MacNAUGHTON

Texas Registered Engineering Firm F-716

De Golger and Mac Naufito

REGNALD A. BOLES
65092
CENSE
ONALE

Regnald A. Boles, P.E. Senior Vice President

DeGolyer and MacNaughton

CERTIFICATE of QUALIFICATION

- I, Regnald A. Boles, Petroleum Engineer with DeGolyer and MacNaughton, 5001 Spring Valley Road, Suite 800 East, Dallas, Texas, 75244 U.S.A., hereby certify:
 - That I am a Senior Vice President with DeGolyer and MacNaughton, which company did prepare the letter report addressed to Eni dated February 28, 2017, and that I, as Senior Vice President, was responsible for the preparation of this letter report.
 - 2. That I attended Texas A&M University, and that I graduated with a Bachelor of Science degree in Petroleum Engineering in the year 1983; that I am a Registered Professional Engineer in the State of Texas; that I am a member of the Society of Petroleum Engineers; and that I have in excess of 33 years of experience in oil and gas reservoir studies and evaluations.

SIGNED: February 28, 2017

REGNALD A. BOLES
65092
CENSE

Regnard A. Boles, P.E. Senior Vice President DeGolyer and MacNaughton

Eni S.p.A.

Estimated

Future Reserves and Income

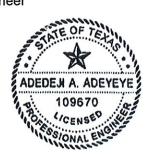
Attributable to Certain

Interests

SEC Parameters

As of

December 31, 2016


Herman G. Acuña, P.E. TBPE License No. 92254

Managing Senior Vice President-International

Adedeji A. Adeveye, P.E. TBPE License No. 109670 Senior Petroleum Engineer

RYDER SCOTT COMPANY, L.P. TBPE Firm Registration No. F-1580

HOUSTON, TEXAS 77002-5294

FAX (713) 651-0849 TELEPHONE (713) 651-9191

February 27, 2017

Eni S.p.A Mr. Pietro G. Consonni Vice President Reserves Via Emilia 1 20097 San Donato Milanese Milano, Italy

Dear Mr. Consonni,

At the request of Eni S.p.A. (Eni), Ryder Scott Company, L.P (Ryder Scott) has conducted a reserves audit of the estimates of the proved reserves as prepared by Eni's engineering and geological staff as of December 31, 2016 based on the definitions and disclosure guidelines of the United States Securities and Exchange Commission (SEC) contained in Title 17, Code of Federal Regulations, Modernization of Oil and Gas Reporting, Final Rule released January 14, 2009 in the Federal Register (SEC regulations). Our third party reserves audit, completed on February 27, 2017 and presented herein, was prepared for public disclosure by Eni in filings made with the SEC in accordance with the disclosure requirements set forth in the SEC regulations. Eni has indicated that the proved net reserves attributable to the properties that we reviewed account for 12 percent of their total net proved remaining hydrocarbon reserves. The subject properties are located in the following geographic locations:

- Europe
- Asia
- Americas
- Sub-Saharan Africa

As prescribed by the Society of Petroleum Engineers in Paragraph 2.2(f) of the Standards Pertaining to the Estimating and Auditing of Oil and Gas Reserves Information (SPE auditing standards), a reserves audit is defined as "the process of reviewing certain of the pertinent facts interpreted and assumptions made that have resulted in an estimate of reserves prepared by others and the rendering of an opinion about (1) the appropriateness of the methodologies employed; (2) the adequacy and quality of the data relied upon; (3) the depth and thoroughness of the reserves estimation process; (4) the classification of reserves appropriate to the relevant definitions used; and (5) the reasonableness of the estimated reserve quantities."

Based on our review, including the data, technical processes and interpretations presented by Eni, it is our opinion that the overall procedures and methodologies utilized by Eni in preparing their estimates of the proved reserves as of December 31, 2016 comply with the current SEC regulations and that the overall proved reserves for the reviewed properties as estimated by Eni are, in the aggregate, reasonable within 5 percent of Ryder Scott's estimates which is less than the established audit tolerance guidelines of 10 percent as set forth in the SPE auditing standards.

The conclusions discussed in this report are related to hydrocarbon prices. Eni has informed us that in preparation of their reserve and income projections, as of December 31, 2016, they used average prices during the 12-month period prior to the "as of date" of this report, determined as the unweighted arithmetic averages of the prices in effect on the first-day-of-the-month for each month within such period, unless prices were defined by contractual arrangements, as required by the SEC regulations. Actual future prices may vary significantly from the prices required by SEC regulations; therefore, volumes of reserves actually recovered may differ significantly from the estimated quantities audited by Ryder Scott.

Reserves Included in This Report

In our opinion, the proved reserves discussed herein conform to the definition as set forth in the Securities and Exchange Commission's Regulations Part 210.4-10(a). An abridged version of the SEC reserves definitions from 210.4-10(a) entitled "Petroleum Reserves Definitions" is included as an attachment to this report.

The various proved reserve status categories are defined under the attachment entitled "Petroleum Reserves Status Definitions and Guidelines" in this report.

No attempt was made to quantify or otherwise account for any accumulated gas production imbalances that may exist. The audited proved gas volumes included gas consumed in operations as reserves. Non-hydrocarbon or inert gas volumes have been excluded from the reserves reported herein.

Reserves are those estimated remaining quantities of petroleum that are anticipated to be economically producible, as of a given date, from known accumulations under defined conditions. All reserve estimates involve an assessment of the uncertainty relating the likelihood that the actual remaining quantities recovered will be greater or less than the estimated quantities determined as of the date the estimate is made. The uncertainty depends chiefly on the amount of reliable geologic and engineering data available at the time of the estimate and the interpretation of these data. The relative degree of uncertainty may be conveyed by placing reserves into one of two principal classifications, either proved or unproved. Unproved reserves are less certain to be recovered than proved reserves, and may be further sub-classified as probable and possible reserves to denote progressively increasing uncertainty in their recoverability. At Eni's request, this report addresses only the proved reserves attributable to the properties evaluated herein.

Proved oil and gas reserves are "those quantities of oil and gas which, by analysis of geoscience and engineering data, can be estimated with reasonable certainty to be economically producible from a given date forward." The proved reserves included herein were estimated using deterministic methods. If deterministic methods are used, the SEC has defined reasonable certainty for proved reserves as a "high degree of confidence that the quantities will be recovered."

Proved reserve estimates will generally be revised only as additional geologic or engineering data become available or as economic conditions change. For proved reserves, the SEC states that "as changes due to increased availability of geoscience (geological, geophysical, and geochemical), engineering, and economic data are made to the estimated ultimate recovery (EUR) with time, reasonably certain EUR is much more likely to increase or remain constant than to decrease." Moreover, estimates of proved reserves may be revised as a result of future operations, effects of regulation by governmental agencies or geopolitical or economic risks. Therefore, the proved reserves included in this report are estimates only and should not be construed as being exact quantities, and if recovered, could be more or less than the estimated amounts.

The proved reserves reported herein are limited to the period prior to expiration of current contracts providing the legal rights to produce, or a revenue interest in such production, unless evidence indicates that contract renewal is reasonably certain. Furthermore, properties in the different countries may be subjected to significantly varying contractual fiscal terms that affect the net revenue to Eni for the production of these volumes. The prices and economic return received for these net volumes can vary significantly based on the terms of these contracts. Therefore, when applicable, Ryder Scott reviewed the fiscal terms of such contracts and discussed with Eni the net economic benefit attributed to such operations for the determination of the net hydrocarbon volumes and income thereof. Ryder Scott has not conducted an exhaustive audit or verification of such contractual information. Neither our review of such contractual information nor our acceptance of Eni's representations regarding such contractual information should be construed as a legal opinion on this matter.

Ryder Scott did not evaluate the country and geopolitical risks in the countries where Eni operates or has interests. Eni's operations may be subject to various levels of governmental controls and regulations. These controls and regulations may include, but may not be limited to, matters relating to land tenure and leasing, the legal rights to produce hydrocarbons including the granting, extension or termination of production sharing contracts, the fiscal terms of various production sharing contracts, drilling and production practices, environmental protection, marketing and pricing policies, royalties, various taxes and levies including income tax, and foreign trade and investment and are subject to change from time to time. Such changes in governmental regulations and policies may cause volumes of proved reserves actually recovered and amounts of proved income actually received to differ significantly from the estimated quantities.

The estimates of proved reserves audited herein were based upon a detailed study of the properties in which Eni owns an interest; however, we have not made any field examination of the properties. No consideration was given in this report to potential environmental liabilities that may exist nor were any costs included for potential liabilities to restore and clean up damages, if any, caused by past operating practices.

Audit Data, Methodology, Procedure and Assumptions

The estimation of reserves involves two distinct determinations. The first determination results in the estimation of the quantities of recoverable oil and gas and the second determination results in the estimation of the uncertainty associated with those estimated quantities in accordance with the definitions set forth by the Securities and Exchange Commission's Regulations Part 210.4-10(a). The process of estimating the quantities of recoverable oil and gas reserves relies on the use of certain generally accepted analytical procedures. These analytical procedures fall into three broad categories or methods: (1) performance-based methods; (2) volumetric-based methods; and (3) analogy. These methods may be used individually or in combination by the reserve evaluator in the process of estimating the quantities of reserves. Reserve evaluators must select the method or combination of methods which in their professional judgment is most appropriate given the nature and amount of reliable geoscience and engineering data available at the time of the estimate, the established or anticipated performance characteristics of the reservoir being evaluated and the stage of development or producing maturity of the property.

In many cases, the analysis of the available geoscience and engineering data and the subsequent interpretation of this data may indicate a range of possible outcomes in an estimate, irrespective of the method selected by the evaluator. When a range in the quantity of reserves is identified, the evaluator must determine the uncertainty associated with the incremental quantities of the reserves. If the reserve quantities are estimated using the deterministic incremental approach, the

uncertainty for each discrete incremental quantity of the reserves is addressed by the reserve category assigned by the evaluator. Therefore, it is the categorization of reserve quantities as proved, probable and/or possible that addresses the inherent uncertainty in the estimated quantities reported. For proved reserves, uncertainty is defined by the SEC as reasonable certainty wherein the "quantities actually recovered are much more likely than not to be achieved." The SEC states that "probable reserves are those additional reserves that are less certain to be recovered than proved reserves but which, together with proved reserves, are as likely as not to be recovered." The SEC states that "possible reserves are those additional reserves that are less certain to be recovered than probable reserves and the total quantities ultimately recovered from a project have a low probability of exceeding proved plus probable plus possible reserves." All quantities of reserves within the same reserve category must meet the SEC definitions as noted above.

Estimates of reserves quantities and their associated reserve categories may be revised in the future as additional geoscience or engineering data become available. Furthermore, estimates of reserves quantities and their associated reserve categories may also be revised due to other factors such as changes in economic conditions, results of future operations, effects of regulation by governmental agencies or geopolitical or economic risks as previously noted herein.

The proved reserves for the properties included herein were estimated by performance methods, analogy methods, the volumetric method, or a combination of performance and volumetric methods. These performance methods include, but may not be limited to, decline curve analysis and analogy which utilized extrapolations of historical production and pressure data available through September 2016 in those cases where such data were considered to be definitive. The data utilized in this analysis were supplied to Ryder Scott by Eni and were considered sufficient for the purpose thereof. The volumetric method was used where there were inadequate historical performance data to establish a definitive trend and where the use of production performance data as a basis for the reserve estimates was considered to be inappropriate. The volumetric analysis utilized pertinent well and seismic data supplied to Ryder Scott by Eni that were available through September 2016. The data utilized from the well and seismic data incorporated into our volumetric analysis were considered sufficient for the purpose thereof.

To estimate economically recoverable proved oil and gas reserves and related future net cash flows, we consider many factors and assumptions including, but not limited to, the use of reservoir parameters derived from geological, geophysical and engineering data that cannot be measured directly, economic criteria based on current costs and SEC pricing requirements, and forecasts of future production rates. Under the SEC regulations 210.4-10(a)(22)(v) and (26), proved reserves must be anticipated to be economically producible from a given date forward based on existing economic conditions including the prices and costs at which economic producibility from a reservoir is to be determined. While it may reasonably be anticipated that the future prices received for the sale of production and the operating costs and other costs relating to such production may increase or decrease from those under existing economic conditions, such changes were, in accordance with rules adopted by the SEC, omitted from consideration in making this evaluation.

Eni has informed us that they have furnished us all of the material accounts, records, geological and engineering data, and reports and other data required for this investigation. In preparing our forecast of future proved production and income, we have relied upon data furnished by Eni with respect to property interests owned, production and well tests from examined wells, normal direct costs of operating the wells or leases, other costs such as transportation and/or processing fees, ad valorem and production taxes, recompletion and development costs, abandonment costs after salvage, product prices based on the SEC regulations, adjustments or differentials to product prices, geological structural and isochore maps, well logs, core analyses, and pressure measurements. Ryder Scott

reviewed such factual data for its reasonableness; however, we have not conducted an independent verification of the data furnished by Eni. We consider the factual data used in this report appropriate and sufficient for the purpose of our investigations.

In summary, we consider the assumptions, data, methods and analytical procedures used in this report appropriate for the purpose hereof, and we have used all such methods and procedures that we consider necessary and appropriate to conduct the audit of reserves of the properties described herein. The proved reserves discussed herein were determined in conformance with the United States Securities and Exchange Commission (SEC) Modernization of Oil and Gas Reporting; Final Rule, including all references to Regulation S-X and Regulation S-K, referred to herein collectively as the "SEC Regulations." In our opinion, the proved reserves reviewed in this report comply with the definitions, guidelines and disclosure requirements as required by the SEC regulations.

Future Production Rates

For wells currently on production, our forecasts of future production rates are based on historical performance data. If no production decline trend has been established, future production rates were held constant, or adjusted for the effects of curtailment where appropriate, until a decline in ability to produce was anticipated. An estimated rate of decline was then applied to depletion of the reserves. If a decline trend has been established, this trend was used as the basis for estimating future production rates.

Test data and other related information were used to estimate the anticipated initial production rates for those wells or locations that are not currently producing. For reserves not yet on production, sales were estimated to commence at an anticipated date furnished by Eni. Wells or locations that are not currently producing may start producing earlier or later than anticipated in our estimates due to unforeseen factors causing a change in the timing to initiate production. Such factors may include delays due to weather, the availability of rigs, the sequence of drilling, completing and/or recompleting wells and/or constraints set by regulatory bodies.

The future production rates from wells currently on production or wells or locations that are not currently producing may be more or less than estimated because of changes including, but not limited to, reservoir performance, operating conditions related to surface facilities, compression and artificial lift, pipeline capacity and/or operating conditions, producing market demand and/or allowables or other constraints set by regulatory bodies.

Hydrocarbon Prices

As stated previously, proved reserves must be anticipated to be economically producible from a given date forward based on existing economic conditions including the prices and costs at which economic producibility from a reservoir is to be determined. To confirm that the proved reserves reviewed by us meet the SEC requirements to be economically producible, we have reviewed certain primary economic data utilized by Eni relating to hydrocarbon prices and costs as noted herein.

The hydrocarbon prices used herein are based on SEC price parameters using the average prices during the 12-month period prior to the "as of date" of this report, determined as the unweighted arithmetic averages of the prices in effect on the first-day-of-the-month for each month within such period, unless prices were defined by contractual arrangements. For hydrocarbon products sold under contract, the contract prices, including fixed and determinable escalations, exclusive of inflation adjustments, were used until expiration of the contract. Upon contract expiration, the prices were adjusted to the 12-month unweighted arithmetic average as previously described.

Eni furnished us with the above mentioned average prices in effect on December 31, 2016. Eni has assured us that these initial SEC hydrocarbon prices were determined using the 12-month average first-day-of-the-month benchmark prices appropriate to the geographic area where the hydrocarbons are sold. The average dated Brent oil price of \$42.80/bbl was used by Eni. Eni also provided us with the gas prices based on their gas sales agreements. All gas prices shown below are in dollars per thousand cubic meters (\$/km³). The average realized prices provided by Eni and used in our evaluation are as follows:

Geographic Area	Product	Average Proved Realized Prices
Europe	Gas	\$163.87/km ³
Asia	Gas	\$ 53.00/km ³
	Oil	\$ 32.42/bbl
Americas	Gas	\$ 28.86/km ³
Sub-Saharan Africa	Gas	\$125.74/km ³
	Oil	\$ 39.67/bbl
	Condensate	\$ 42.79/bbl

The product prices that were actually used to determine the future gross revenue for each property reflect adjustments to the benchmark prices for gravity, quality, local conditions and/or distance from market, referred to herein as "differentials." The differentials used in the preparation of this report were furnished to us by Eni. The differentials furnished to us were accepted as factual data and reviewed by us for their reasonableness; however, we have not conducted an independent verification of the data used by Eni to determine these differentials.

Costs

Operating costs used in our evaluation were based on the operating expense reports of Eni and include only those costs directly applicable to the evaluated assets. The operating costs include a portion of general and administrative costs allocated directly to the leases and wells. The operating costs furnished to us were accepted as factual data and reviewed by us for their reasonableness; however, we have not conducted an independent verification of the operating cost data used by Eni. No deduction was made for loan repayments, interest expenses, or exploration and development prepayments that were not charged directly to the assets.

Development costs were furnished to us by Eni and are based on authorizations for expenditure for the proposed work or actual costs for similar projects. The development costs furnished to us were accepted as factual data and reviewed by us for their reasonableness; however, we have not conducted an independent verification of these costs. The estimated net cost of abandonment after salvage was included for properties where abandonment costs net of salvage were significant. The estimates of the net abandonment costs furnished by Eni were accepted without independent verification.

The proved developed and undeveloped reserves in this report have been incorporated herein in accordance with Eni's plans to develop these reserves as of December 31, 2016. The implementation of Eni's development plans as presented to us and incorporated herein is subject to the approval process adopted by Eni's management. As the result of our inquires during the course of preparing this report, Eni has informed us that the development activities included herein have been

subjected to and received the internal approvals required by Eni's management at the appropriate local, regional and/or corporate level. In addition to the internal approvals as noted, certain development activities may still be subject to specific partner AFE processes, Joint Operating Agreement (JOA) requirements or other administrative approvals external to Eni. Additionally, Eni has informed us that they are not aware of any legal, regulatory or political obstacles that would significantly alter their plans. While these plans could change from those under existing economic conditions as of December 31, 2016, such changes were, in accordance with rules adopted by the SEC, omitted from consideration in making this evaluation.

Current costs used by Eni were held constant throughout the life of the properties.

Standards of Independence and Professional Qualification

Ryder Scott is an independent petroleum engineering consulting firm that has been providing petroleum consulting services throughout the world since 1937. Ryder Scott is employee-owned and maintains offices in Houston, Texas; Denver, Colorado; and Calgary, Alberta, Canada. We have over eighty engineers and geoscientists on our permanent staff. By virtue of the size of our firm and the large number of clients for which we provide services, no single client or job represents a material portion of our annual revenue. We do not serve as officers or directors of any privately-owned or publicly-traded oil and gas company and are separate and independent from the operating and investment decision-making process of our clients. This allows us to bring the highest level of independence and objectivity to each engagement for our services.

Ryder Scott actively participates in industry-related professional societies and organizes an annual public forum focused on the subject of reserves evaluations and SEC regulations. Many of our staff have authored or co-authored technical papers on the subject of reserves related topics. We encourage our staff to maintain and enhance their professional skills by actively participating in ongoing continuing education.

Prior to becoming an officer of the Company, Ryder Scott requires that staff engineers and geoscientists have received professional accreditation in the form of a registered or certified professional engineer's license or a registered or certified professional geoscientist's license, or the equivalent thereof, from an appropriate governmental authority or a recognized self-regulating professional organization.

We are independent petroleum engineers with respect to Eni. Neither we nor any of our employees have any financial interest in the subject properties and neither the employment to do this work nor the compensation is contingent on our estimates of reserves for the properties which were reviewed.

The results of this study, presented herein, are based on technical analysis conducted by teams of geoscientists and engineers from Ryder Scott. The professional qualifications of the undersigned, the technical person primarily responsible for overseeing, reviewing and approving the evaluation of the reserves information discussed in this report, are included as an attachment to this letter.

Terms of Usage

The results of our third party audit, presented in report form herein, were prepared in accordance with the disclosure requirements set forth in the SEC regulations and intended for public disclosure as an exhibit in filings made with the SEC by Eni.

We have provided Eni with a digital version of the original signed copy of this report letter. In the event there are any differences between the digital version included in filings made by Eni and the original signed report letter, the original signed report letter shall control and supersede the digital version.

The data and work papers used in the preparation of this report are available for examination by authorized parties in our offices. Please contact us if we can be of further service.

Very truly yours,

RYDER SCOTT COMPANY, L. P. TBPE Firm Registration No. F-1580

Herman G. Acuna, P.E. TBPE License No. 92254

Managing Senior Vice President - International

Adedeji A. Adeyeye, P.E. TBPE License No. 109670 Senior Petroleum Engineer

HGA-AAA (DPR)/pl

Professional Qualifications of Primary Technical Person

The conclusions presented in this report are the result of technical analysis conducted by teams of geoscientists and engineers from Ryder Scott Company, L.P. Herman G. Acuña was the primary technical person responsible for overseeing the independent estimation of the reserves, future production and income to render the audit conclusions of the report.

Mr. Acuña, an employee of Ryder Scott Company, L.P. (Ryder Scott) since 1997, is a Managing Senior International Vice President and Board Member. He serves as an Engineering Group Coordinator responsible for coordinating and supervising staff and consulting engineers of the company in ongoing reservoir evaluation studies worldwide. Before joining Ryder Scott, Mr. Acuña served in a number of engineering positions with Exxon. For more information regarding Mr. Acuña's geographic and job specific experience, please refer to the Ryder Scott Company website at www.ryderscott.com.

Mr. Acuña earned a Bachelor (Cum Laude) and a Masters (Magna Cum Laude) of Science degree in Petroleum Engineering from The University of Tulsa in 1987 and 1989 respectively. He is a registered Professional Engineer in the State of Texas, a member of the Association of International Petroleum Negotiators (AIPN) and the Society of Petroleum Engineers (SPE).

In addition to gaining experience and competency through prior work experience, the Texas Board of Professional Engineers requires a minimum of fifteen hours of continuing education annually, including at least one hour in the area of professional ethics, which Mr. Acuña fulfills. Mr. Acuña has attended formalized training and conferences including dedicated to the subject of the definitions and disclosure guidelines contained in the United States Securities and Exchange Commission Title 17, Code of Federal Regulations, Modernization of Oil and Gas Reporting, Final Rule released January 14, 2009 in the Federal Register. Mr. Acuña has recently taught various company reserves evaluation schools in Argentina, China, Denmark, Spain and the U.S.A. Mr. Acuña has participated in various capacities in reserves conferences such as being a panelist at Trinidad and Tobago's Petroleum Conference, delivering the reserves evaluation seminar during IAPG convention in Mendoza, Argentina and chairing the first Reserves Evaluation Conference in the Middle East in Dubai, U.A.E.

Based on his educational background, professional training and over 20 years of practical experience in petroleum engineering and the estimation and evaluation of petroleum reserves, Mr. Acuña has attained the professional qualifications as a Reserves Estimator and Reserves Auditor set forth in Article III of the "Standards Pertaining to the Estimating and Auditing of Oil and Gas Reserves Information" promulgated by the Society of Petroleum Engineers as of February 19, 2007.

PETROLEUM RESERVES DEFINITIONS

As Adapted From: RULE 4-10(a) of REGULATION S-X PART 210 UNITED STATES SECURITIES AND EXCHANGE COMMISSION (SEC)

PREAMBLE

On January 14, 2009, the United States Securities and Exchange Commission (SEC) published the "Modernization of Oil and Gas Reporting; Final Rule" in the Federal Register of National Archives and Records Administration (NARA). The "Modernization of Oil and Gas Reporting; Final Rule" includes revisions and additions to the definition section in Rule 4-10 of Regulation S-X, revisions and additions to the oil and gas reporting requirements in Regulation S-K, and amends and codifies Industry Guide 2 in Regulation S-K. The "Modernization of Oil and Gas Reporting; Final Rule", including all references to Regulation S-X and Regulation S-K, shall be referred to herein collectively as the "SEC Regulations". The SEC Regulations take effect for all filings made with the United States Securities and Exchange Commission as of December 31, 2009, or after January 1, 2010. Reference should be made to the full text under Title 17, Code of Federal Regulations, Regulation S-X Part 210, Rule 4-10(a) for the complete definitions, as the following definitions, descriptions and explanations rely wholly or in part on excerpts from the original document (direct passages excerpted from the aforementioned SEC document are denoted in italics herein).

Reserves are those estimated remaining quantities of petroleum which are anticipated to be economically producible, as of a given date, from known accumulations under defined conditions. All reserve estimates involve some degree of uncertainty. The uncertainty depends chiefly on the amount of reliable geologic and engineering data available at the time of the estimate and the interpretation of these data. The relative degree of uncertainty may be conveyed by placing reserves into one of two principal classifications, either proved or unproved. Unproved reserves are less certain to be recovered than proved reserves and may be further sub-classified as probable and possible reserves to denote progressively increasing uncertainty in their recoverability. Under the SEC Regulations as of December 31, 2009, or after January 1, 2010, a company may optionally disclose estimated quantities of probable or possible oil and gas reserves in documents publicly filed with the Commission. The SEC Regulations continue to prohibit disclosure of estimates of oil and gas resources other than reserves and any estimated values of such resources in any document publicly filed with the Commission unless such information is required to be disclosed in the document by foreign or state law as noted in §229.1202 Instruction to Item 1202.

Reserves estimates will generally be revised as additional geologic or engineering data become available or as economic conditions change.

Reserves may be attributed to either natural energy or improved recovery methods. Improved recovery methods include all methods for supplementing natural energy or altering natural forces in the reservoir to increase ultimate recovery. Examples of such methods are pressure maintenance, natural gas cycling, waterflooding, thermal methods, chemical flooding, and the use of miscible and immiscible displacement fluids. Other improved recovery methods may be developed in the future as petroleum technology continues to evolve.

Reserves may be attributed to either conventional or unconventional petroleum accumulations. Petroleum accumulations are considered as either conventional or unconventional based on the nature of their in-place characteristics, extraction method applied, or degree of processing prior to sale.

Examples of unconventional petroleum accumulations include coalbed or coalseam methane (CBM/CSM), basin-centered gas, shale gas, gas hydrates, natural bitumen and oil shale deposits. These unconventional accumulations may require specialized extraction technology and/or significant processing prior to sale.

Reserves do not include quantities of petroleum being held in inventory.

Because of the differences in uncertainty, caution should be exercised when aggregating quantities of petroleum from different reserves categories.

RESERVES (SEC DEFINITIONS)

Securities and Exchange Commission Regulation S-X §210.4-10(a)(26) defines reserves as follows:

Reserves. Reserves are estimated remaining quantities of oil and gas and related substances anticipated to be economically producible, as of a given date, by application of development projects to known accumulations. In addition, there must exist, or there must be a reasonable expectation that there will exist, the legal right to produce or a revenue interest in the production, installed means of delivering oil and gas or related substances to market, and all permits and financing required to implement the project.

Note to paragraph (a)(26): Reserves should not be assigned to adjacent reservoirs isolated by major, potentially sealing, faults until those reservoirs are penetrated and evaluated as economically producible. Reserves should not be assigned to areas that are clearly separated from a known accumulation by a non-productive reservoir (i.e., absence of reservoir, structurally low reservoir, or negative test results). Such areas may contain prospective resources (i.e., potentially recoverable resources from undiscovered accumulations).

PROVED RESERVES (SEC DEFINITIONS)

Securities and Exchange Commission Regulation S-X §210.4-10(a)(22) defines proved oil and gas reserves as follows:

Proved oil and gas reserves. Proved oil and gas reserves are those quantities of oil and gas, which, by analysis of geoscience and engineering data, can be estimated with reasonable certainty to be economically producible—from a given date forward, from known reservoirs, and under existing economic conditions, operating methods, and government regulations—prior to the time at which contracts providing the right to operate expire, unless evidence indicates that renewal is reasonably certain, regardless of whether deterministic or probabilistic methods are used for the estimation. The project to extract the hydrocarbons must have commenced or the operator must be reasonably certain that it will commence the project within a reasonable time.

- (i) The area of the reservoir considered as proved includes:
 - (A) The area identified by drilling and limited by fluid contacts, if any, and
 - (B) Adjacent undrilled portions of the reservoir that can, with reasonable certainty, be judged to be continuous with it and to contain economically producible oil or gas on the basis of available geoscience and engineering data.

(ii) In the absence of data on fluid contacts, proved quantities in a reservoir are limited by the lowest known hydrocarbons (LKH) as seen in a well penetration unless geoscience, engineering, or performance data and reliable technology establishes a lower contact with reasonable certainty.

PROVED RESERVES (SEC DEFINITIONS) CONTINUED

- (iii) Where direct observation from well penetrations has defined a highest known oil (HKO) elevation and the potential exists for an associated gas cap, proved oil reserves may be assigned in the structurally higher portions of the reservoir only if geoscience, engineering, or performance data and reliable technology establish the higher contact with reasonable certainty. (iv) Reserves which can be produced economically through application of improved recovery techniques (including, but not limited to, fluid injection) are included in the proved classification when:
 - (A) Successful testing by a pilot project in an area of the reservoir with properties no more favorable than in the reservoir as a whole, the operation of an installed program in the reservoir or an analogous reservoir, or other evidence using reliable technology establishes the reasonable certainty of the engineering analysis on which the project or program was based; and
 - (B) The project has been approved for development by all necessary parties and entities, including governmental entities.
- (v) Existing economic conditions include prices and costs at which economic producibility from a reservoir is to be determined. The price shall be the average price during the 12-month period prior to the ending date of the period covered by the report, determined as an unweighted arithmetic average of the first-day-of-the-month price for each month within such period, unless prices are defined by contractual arrangements, excluding escalations based upon future conditions.

PETROLEUM RESERVES STATUS DEFINITIONS AND GUIDELINES

As Adapted From:
RULE 4-10(a) of REGULATION S-X PART 210
UNITED STATES SECURITIES AND EXCHANGE COMMISSION (SEC)

and

PETROLEUM RESOURCES MANAGEMENT SYSTEM (SPE-PRMS)

Sponsored and Approved by:

SOCIETY OF PETROLEUM ENGINEERS (SPE),

WORLD PETROLEUM COUNCIL (WPC)

AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS (AAPG)

SOCIETY OF PETROLEUM EVALUATION ENGINEERS (SPEE)

Reserves status categories define the development and producing status of wells and reservoirs. Reference should be made to Title 17, Code of Federal Regulations, Regulation S-X Part 210, Rule 4-10(a) and the SPE-PRMS as the following reserves status definitions are based on excerpts from the original documents (direct passages excerpted from the aforementioned SEC and SPE-PRMS documents are denoted in italics herein).

DEVELOPED RESERVES (SEC DEFINITIONS)

Securities and Exchange Commission Regulation S-X §210.4-10(a)(6) defines developed oil and gas reserves as follows:

Developed oil and gas reserves are reserves of any category that can be expected to be recovered:

- (i) Through existing wells with existing equipment and operating methods or in which the cost of the required equipment is relatively minor compared to the cost of a new well; and
- (ii) Through installed extraction equipment and infrastructure operational at the time of the reserves estimate if the extraction is by means not involving a well.

Developed Producing (SPE-PRMS Definitions)

While not a requirement for disclosure under the SEC regulations, developed oil and gas reserves may be further sub-classified according to the guidance contained in the SPE-PRMS as Producing or Non-Producing.

Developed Producing Reserves

Developed Producing Reserves are expected to be recovered from completion intervals that are open and producing at the time of the estimate.

Improved recovery reserves are considered producing only after the improved recovery project is in operation.

PETROLEUM RESERVES STATUS DEFINITIONS AND GUIDELINES Page 2

Developed Non-Producing

Developed Non-Producing Reserves include shut-in and behind-pipe reserves.

Shut-In

Shut-in Reserves are expected to be recovered from:

- (1) completion intervals which are open at the time of the estimate but which have not yet started producing;
- (2) wells which were shut-in for market conditions or pipeline connections; or
- (3) wells not capable of production for mechanical reasons.

Behind-Pipe

Behind-pipe Reserves are expected to be recovered from zones in existing wells which will require additional completion work or future re-completion prior to start of production.

In all cases, production can be initiated or restored with relatively low expenditure compared to the cost of drilling a new well.

UNDEVELOPED RESERVES (SEC DEFINITIONS)

Securities and Exchange Commission Regulation S-X §210.4-10(a)(31) defines undeveloped oil and gas reserves as follows:

Undeveloped oil and gas reserves are reserves of any category that are expected to be recovered from new wells on undrilled acreage, or from existing wells where a relatively major expenditure is required for recompletion.

- (i) Reserves on undrilled acreage shall be limited to those directly offsetting development spacing areas that are reasonably certain of production when drilled, unless evidence using reliable technology exists that establishes reasonable certainty of economic producibility at greater distances.
- (ii) Undrilled locations can be classified as having undeveloped reserves only if a development plan has been adopted indicating that they are scheduled to be drilled within five years, unless the specific circumstances, justify a longer time.
- (iii) Under no circumstances shall estimates for undeveloped reserves be attributable to any acreage for which an application of fluid injection or other improved recovery technique is contemplated, unless such techniques have been proved effective by actual projects in the same reservoir or an analogous reservoir, as defined in paragraph (a)(2) of this section, or by other evidence using reliable technology establishing reasonable certainty.

Gaffney, Cline & Associates

Gaffney, Cline & Associates Limited

Bentley Hall, Blacknest Alton, Hampshire GU34 4PU, UK Telephone: +44 (0)1420 525366 Fax: +44 (0) 1420 525367

www.gaffney-cline.com

9th March, 2017

JKB/kab/EL-16-211000/0841

Mr. Pietro Consonni Vice President Reserves **Eni S.p.A.** Via Emilia 1 20097 San Donato Milanese Milano, Italy

Dear Mr Consonni.

Proved Reserves Statement (SEC Rules) Certain Properties in Asia as of 31st December, 2016

This proved reserves audit has been conducted by Gaffney, Cline & Associates (GCA) at the request of Eni S.p.A. (Eni or "the Client"), in certain properties located in Asia. This third party report, completed on February 14, is intended for inclusion in Eni's filings to the U.S. Securities and Exchange Commission (SEC).

This statement relates specifically and solely to the subject matter as set out herein and is conditional upon the specified assumptions. The report must be considered in its entirety and must only be used for the purpose for which it was intended.

On the basis of technical and other information made available to GCA concerning these properties, GCA has conducted an independent audit examination, as of 31st December, 2016, of the proved crude oil and natural gas reserves as prepared by Eni in certain properties in Asia, based on the definitions and disclosure guidelines of the United States Securities and Exchange Commission (SEC) contained in Title 17, Code of Federal Regulations, Modernization of Oil and Gas Reporting, Final Rule released January 14, 2009 in the Federal register.

Reserves included herein are expressed as net reserves as represented by Eni.

Eni has advised GCA that the net proved reserves of the properties that GCA reviewed represent 0.4 percent of Eni's total net proved reserves as of December 31, 2016, on an oil-equivalent basis. GCA is not in a position to verify this statement as it was not requested to review Eni's other oil and gas assets.

Reserves Assessment

This audit examination was based on reserves estimates and other information provided by Eni to GCA through 31st December, 2016, and included such tests, procedures and adjustments as were considered necessary. All questions that arose during the audit process were resolved to GCA's satisfaction. For the purposes of this assessment, Eni provided GCA with a set of data and presentation material that included production, reservoir studies and a

selection of static and dynamic models. GCA audited the data provided for consistency and reasonableness. GCA also had discussions and meetings with Eni technical and commercial personnel.

As part of the audit GCA developed independent production forecasts, employing decline curve analysis, material balance and type well methods, in addition to auditing and reviewing Eni's static, dynamic and material balance models, to ensure consistency with the volumetric and other methods performed by Eni. The properties are all mature producing fields and it is GCA's opinion that performance-based methods are appropriate for the purposes of estimating remaining recoverable volumes and reserves. GCA has also performed an economic limit test to establish the economic limit and commerciality of the properties in aggregate.

Up to the economic limit, the GCA estimates of proved reserves for the reviewed properties are, in aggregate, reasonable and within 7 percent of Eni's estimates, when compared on the basis of net equivalent barrels.

The economic tests for the 31st December, 2016 net proved reserves were based on a flat oil price of US\$35.38 per barrel, based on an unweighted average of the first day of the month realized prices over the preceding 12 months, as per SEC rules. Future capital costs were derived from development plans prepared by Eni for the fields. Recent historical operating expense data were used as the basis for operating cost projections. GCA has reviewed Eni's estimates of capital and operating costs and considers them to be reasonable. Excluding abandonment costs, GCA has found that Eni has projected sufficient capital investments and operating expenses to economically produce the projected volumes.

It is GCA's opinion that the estimates of net proved reserves as of 31st December, 2016, are, in the aggregate, reasonable and the reserves categorization is appropriate and consistent with the definitions for reserves in Part 210 Rule 4-10(a) of Regulation S-X of the US Securities and Exchange Commission (see Appendix I).

GCA concludes that the methodologies employed by Eni in the derivation of the proved reserves estimates are appropriate, and that the quality of the data relied upon and the depth and thoroughness of the reserves estimation process are adequate.

Basis of Opinion

This document reflects GCA's informed professional judgment based on accepted standards of professional investigation and, as applicable, the data and information provided by the Client, the limited scope of engagement, and the time permitted to conduct the evaluation.

In line with those accepted standards, this document does not in any way constitute or make a guarantee or prediction of results, and no warranty is implied or expressed that actual outcome will conform to the outcomes presented herein. GCA has not independently verified any information provided by, or at the direction of, the Client, and has accepted the accuracy and completeness of this data. GCA has no reason to believe that any material facts have been withheld, but does not warrant that its inquiries have revealed all of the matters that a more extensive examination might otherwise disclose.

The opinions expressed herein are subject to and fully qualified by the generally accepted uncertainties associated with the interpretation of geoscience, engineering and production data and do not reflect the totality of circumstances, scenarios and information that could potentially affect decisions made by the report's recipients and/or actual results. The opinions and statements contained in this report are made in good faith and in the belief that such

opinions and statements are representative of prevailing physical and economic circumstances.

There are numerous uncertainties inherent in estimating reserves, and in projecting future production, development expenditures, operating expenses and cash flows. Oil and gas resources assessments must be recognized as a subjective process of estimating subsurface accumulations of oil and gas that cannot be measured in an exact way. Estimates of oil and gas reserves prepared by other parties may differ, perhaps materially, from those contained within this report.

The accuracy of any reserves estimate is a function of the quality of the available data and of engineering and geological interpretation. Results of drilling, testing and production that post-date the preparation of the estimates may justify revisions, some or all of which may be material. Accordingly, reserves estimates are often different from the quantities of oil and gas that are ultimately recovered, and the timing and cost of those volumes that are recovered may vary from that assumed.

GCA's review and audit involved reviewing pertinent facts, interpretations and assumptions made by Eni or others in preparing estimates of reserves and resources. GCA performed procedures necessary to enable it to render an opinion on the appropriateness of the methodologies employed, adequacy and quality of the data relied on, depth and thoroughness of the reserves estimation process, classification and categorization of reserves appropriate to the relevant definitions used, and reasonableness of the estimates.

Definition of Reserves

Reserves are estimated remaining quantities of oil and gas and related substances anticipated to be economically producible, as of a given date, by application of development projects to known accumulations. In addition, there must exist, or there must be a reasonable expectation that there will exist, the legal right to produce, or a revenue interest in, the production, installed means of delivering oil and gas or related substances to market, and all permits and financing required to implement the project.

Proved oil and gas reserves are those quantities of oil and gas, which, by analysis of geoscience and engineering data, can be estimated with reasonable certainty to be economically producible—from a given date forward, from known reservoirs, and under existing economic conditions, operating methods, and government regulations—prior to the time at which contracts providing the right to operate expire, unless evidence indicates that renewal is reasonably certain, regardless of whether deterministic or probabilistic methods are used for the estimation. The project to extract the hydrocarbons must have commenced or the operator must be reasonably certain that it will commence the project within a reasonable time.

GCA is not aware of any potential changes in regulations applicable to these fields that could affect the ability of Eni to produce the estimated reserves.

GCA has not undertaken a site visit and inspection because it was not requested. As such, GCA is not in a position to comment on the operations or facilities in place, their appropriateness and condition, or whether they are in compliance with the regulations pertaining to such operations. Further, GCA is not in a position to comment on any aspect of health, safety, or environment of such operation.

This report has been prepared based on GCA's understanding of the effects of petroleum legislation and other regulations that currently apply to these properties. However, GCA is not in a position to attest to property title or rights, conditions of these rights (including

environmental and abandonment obligations), or any necessary licenses and consents (including planning permission, financial interest relationships, or encumbrances thereon for any part of the appraised properties).

Qualifications

In performing this study, GCA is not aware that any conflict of interest has existed. As an independent consultancy, GCA is providing impartial technical, commercial, and strategic advice within the energy sector. GCA's remuneration was not in any way contingent on the contents of this report.

In the preparation of this document, GCA has maintained, and continues to maintain, a strict independent consultant-client relationship with Eni. Furthermore, the management and employees of GCA have no interest in any of the assets evaluated or related with the analysis performed, as part of this report. The qualifications of the technical person primarily responsible for overseeing this audit are provided in Appendix II.

Staff members who prepared this report hold appropriate professional and educational qualifications and have the necessary levels of experience and expertise to perform the work.

Notice

This report was prepared for public disclosure in its entirety in conjunction with filings to the SEC by Eni S.p.A.

Yours sincerely,

Gaffney, Cline & Associates

Project Manager

Jeremy Berry, Global Business Development Manager

Reviewed by

Dr. John W Barker, Technical Director

Appendices

Appendix I SEC Rese

SEC Reserves Definitions

Appendix II Technical Qualifications of Person Responsible for Audit

Appendix I SEC Reserves Definitions

U.S. SECURITIES AND EXCHANGE COMMISSION (SEC) MODERNIZATION OF OIL AND GAS REPORTING1

Oil and Gas Reserves Definitions and Reporting

(a) <u>Definitions</u>

- (1) <u>Acquisition of properties.</u> Costs incurred to purchase, lease or otherwise acquire a property, including costs of lease bonuses and options to purchase or lease properties, the portion of costs applicable to minerals when land including mineral rights is purchased in fee, brokers' fees, recording fees, legal costs, and other costs incurred in acquiring properties.
- (2) <u>Analogous reservoir.</u> Analogous reservoirs, as used in resources assessments, have similar rock and fluid properties, reservoir conditions (depth, temperature, and pressure) and drive mechanisms, but are typically at a more advanced stage of development than the reservoir of interest and thus may provide concepts to assist in the interpretation of more limited data and estimation of recovery. When used to support proved reserves, an "analogous reservoir" refers to a reservoir that shares the following characteristics with the reservoir of interest:
 - (i) Same geological formation (but not necessarily in pressure communication with the reservoir of interest);
 - (ii) Same environment of deposition;
 - (iii) Similar geological structure; and
 - (iv) Same drive mechanism.

<u>Instruction to paragraph (a)(2):</u> Reservoir properties must, in the aggregate, be no more favorable in the analog than in the reservoir of interest.

- (3) <u>Bitumen.</u> Bitumen, sometimes referred to as natural bitumen, is petroleum in a solid or semisolid state in natural deposits with a viscosity greater than 10,000 centipoise measured at original temperature in the deposit and atmospheric pressure, on a gas free basis. In its natural state it usually contains sulfur, metals, and other non-hydrocarbons.
- (4) <u>Condensate</u>. Condensate is a mixture of hydrocarbons that exists in the gaseous phase at original reservoir temperature and pressure, but that, when produced, is in the liquid phase at surface pressure and temperature.
- (5) <u>Deterministic estimate.</u> The method of estimating reserves or resources is called deterministic when a single value for each parameter (from the geoscience, engineering, or economic data) in the reserves calculation is used in the reserves estimation procedure.
- (6) <u>Developed oil and gas reserves.</u> Developed oil and gas reserves are reserves of any category that can be expected to be recovered:
 - (i) Through existing wells with existing equipment and operating methods or in which the cost of the required equipment is relatively minor compared to the cost of a new well; and
 - (ii) Through installed extraction equipment and infrastructure operational at the time of the reserves estimate if the extraction is by means not involving a well.

¹ Extracted from 17 CFR Parts 210, 211, 229, and 249 [Release Nos. 33-8995; 34-59192; FR-78; File No. S7-15-08] RIN 3235-AK00].

- (7) <u>Development costs.</u> Costs incurred to obtain access to proved reserves and to provide facilities for extracting, treating, gathering and storing the oil and gas. More specifically, development costs, including depreciation and applicable operating costs of support equipment and facilities and other costs of development activities, are costs incurred to:
 - (i) Gain access to and prepare well locations for drilling, including surveying well locations for the purpose of determining specific development drilling sites, clearing ground, draining, road building, and relocating public roads, gas lines, and power lines, to the extent necessary in developing the proved reserves.
 - (ii) Drill and equip development wells, development-type stratigraphic test wells, and service wells, including the costs of platforms and of well equipment such as casing, tubing, pumping equipment, and the wellhead assembly.
 - (iii) Acquire, construct, and install production facilities such as lease flow lines, separators, treaters, heaters, manifolds, measuring devices, and production storage tanks, natural gas cycling and processing plants, and central utility and waste disposal systems.
 - (iv) Provide improved recovery systems.
- (8) <u>Development project.</u> A development project is the means by which petroleum resources are brought to the status of economically producible. As examples, the development of a single reservoir or field, an incremental development in a producing field, or the integrated development of a group of several fields and associated facilities with a common ownership may constitute a development project.
- (9) <u>Development well.</u> A well drilled within the proved area of an oil or gas reservoir to the depth of a stratigraphic horizon known to be productive.
- (10) <u>Economically producible.</u> The term economically producible, as it relates to a resource, means a resource which generates revenue that exceeds, or is reasonably expected to exceed, the costs of the operation. The value of the products that generate revenue shall be determined at the terminal point of oil and gas producing activities as defined in paragraph (a)(16) of this section.
- (11) <u>Estimated ultimate recovery (EUR).</u> Estimated ultimate recovery is the sum of reserves remaining as of a given date and cumulative production as of that date.
- (12) <u>Exploration costs.</u> Costs incurred in identifying areas that may warrant examination and in examining specific areas that are considered to have prospects of containing oil and gas reserves, including costs of drilling exploratory wells and exploratory-type stratigraphic test wells. Exploration costs may be incurred both before acquiring the related property (sometimes referred to in pail as prospecting costs) and after acquiring the property. Principal types of exploration costs, which include depreciation and applicable operating costs of support equipment and facilities and other costs of exploration activities, are:
 - (i) Costs of topographical, geographical and geophysical studies, rights of access to properties to conduct those studies, and salaries and other expenses of geologists, geophysical crews, and others conducting those studies. Collectively, these are sometimes referred to as geological and geophysical or "G&G" costs.
 - (ii) Costs of carrying and retaining undeveloped properties, such as delay rentals, ad valorem taxes on properties, legal costs for title defense, and the maintenance of land and lease records.
 - (iii) Dry hole contributions and bottom hole contributions.
 - (iv) Costs of drilling and equipping exploratory wells.
 - (v) Costs of drilling exploratory-type stratigraphic test wells.
- (13) Exploratory well. An exploratory well is a well drilled to find a new field or to find a new reservoir in a field previously found to be productive of oil or gas in another reservoir. Generally, an exploratory well is any well that is not a development well, an extension well, a service well, or a stratigraphic test well as those items are defined in this section.

- (14) Extension well. An extension well is a well drilled to extend the limits of a known reservoir.
- (15) Field. An area consisting of a single reservoir or multiple reservoirs all grouped on or related to the same individual geological structural feature and/or stratigraphic condition. There may be two or more reservoirs in a field which are separated vertically by intervening impervious strata, or laterally by local geologic barriers, or by both. Reservoirs that are associated by being in overlapping or adjacent fields may be treated as a single or common operational field. The geological terms "structural feature" and "stratigraphic condition" are intended to identify localized geological features as opposed to the broader terms of basins, trends, provinces, plays, areas-of-interest, etc.

(16) Oil and gas producing activities.

- (i) Oil and gas producing activities include:
 - (A) The search for crude oil, including condensate and natural gas liquids, or natural gas ("oil and gas") in their natural states and original locations;
 - (B) The acquisition of property rights or properties for the purpose of further exploration or for the purpose of removing the oil or gas from such properties;
 - (C) The construction, drilling, and production activities necessary to retrieve oil and gas from their natural reservoirs, including the acquisition, construction, installation, and maintenance of field gathering and storage systems, such as:
 - (1) Lifting the oil and gas to the surface; and
 - (2) Gathering, treating, and field processing (as in the case of processing gas to extract liquid hydrocarbons); and
 - (D) Extraction of saleable hydrocarbons, in the solid, liquid, or gaseous state, from oil sands, shale, coalbeds, or other nonrenewable natural resources which are intended to be upgraded into synthetic oil or gas, and activities undertaken with a view to such extraction.

Instruction 1 to paragraph (a)(16)(i): The oil and gas production function shall be regarded as ending at a "terminal point", which is the outlet valve on the lease or field storage tank. If unusual physical or operational circumstances exist, it may be appropriate to regard the terminal point for the production function as:

- a. The first point at which oil, gas, or gas liquids, natural or synthetic, are delivered to a main pipeline, a common carrier, a refinery, or a marine terminal; and
- b. In the case of natural resources that are intended to be upgraded into synthetic oil or gas, if those natural resources are delivered to a purchaser prior to upgrading, the first point at which the natural resources are delivered to a main pipeline, a common carrier, a refinery, a marine terminal, or a facility which upgrades such natural resources into synthetic oil or gas.

Instruction 2 to paragraph (a)(16)(i): For purposes of this paragraph (a)(16), the term saleable hydrocarbons means hydrocarbons that are saleable in the state in which the hydrocarbons are delivered.

- (ii) Oil and gas producing activities do not include:
 - (A) Transporting, refining, or marketing oil and gas;
 - (B) Processing of produced oil, gas or natural resources that can be upgraded into synthetic oil or gas by a registrant that does not have the legal right to produce or a revenue interest in such production;
 - (C) Activities relating to the production of natural resources other than oil, gas, or natural resources from which synthetic oil and gas can be extracted; or
 - (D) Production of geothermal steam.
- (17) Possible reserves. Possible reserves are those additional reserves that are less certain to be

recovered than probable reserves.

- (i) When deterministic methods are used, the total quantities ultimately recovered from a project have a low probability of exceeding proved plus probable plus possible reserves. When probabilistic methods are used, there should be at least a 10% probability that the total quantities ultimately recovered will equal or exceed the proved plus probable plus possible reserves estimates.
- (ii) Possible reserves may be assigned to areas of a reservoir adjacent to probable reserves where data control and interpretations of available data are progressively less certain. Frequently, this will be in areas where geoscience and engineering data are unable to define clearly the area and vertical limits of commercial production from the reservoir by a defined project.
- (iii) Possible reserves also include incremental quantities associated with a greater percentage recovery of the hydrocarbons in place than the recovery quantities assumed for probable reserves.
- (iv) The proved plus probable and proved plus probable plus possible reserves estimates must be based on reasonable alternative technical and commercial interpretations within the reservoir or subject project that are clearly documented, including comparisons to results in successful similar projects.
- Possible reserves may be assigned where geoscience and engineering data identify directly adjacent portions of a reservoir within the same accumulation that may be separated from proved areas by faults with displacement less than formation thickness or other geological discontinuities and that have not been penetrated by a wellbore, and the registrant believes that such adjacent portions are in communication with the known (proved) reservoir. Possible reserves may be assigned to areas that are structurally higher or lower than the proved area if these areas are in communication with the proved reservoir.
- (vi) Pursuant to paragraph (a)(22)(iii) of this section, where direct observation has defined a highest known oil (HKO) elevation and the potential exists for an associated gas cap, proved oil reserves should be assigned in the structurally higher portions of the reservoir above the HKO only if the higher contact can be established with reasonable certainty through reliable technology. Portions of the reservoir that do not meet this reasonable certainty criterion may be assigned as probable and possible oil or gas based on reservoir fluid properties and pressure gradient interpretations.
- (18) <u>Probable reserves.</u> Probable reserves are those additional reserves that are less certain to be recovered than proved reserves but which, together with proved reserves, are as likely as not to be recovered.
 - (i) When deterministic methods are used, it is as likely as not that actual remaining quantities recovered will exceed the sum of estimated proved plus probable reserves. When probabilistic methods are used, there should be at least a 50% probability that the actual quantities recovered will equal or exceed the proved plus probable reserves estimates.
 - (ii) Probable reserves may be assigned to areas of a reservoir adjacent to proved reserves where data control or interpretations of available data are less certain, even if the interpreted reservoir continuity of structure or productivity does not meet the reasonable certainty criterion. Probable reserves may be assigned to areas that are structurally higher than the proved area if these areas are in communication with the proved reservoir.
 - (iii) Probable reserves estimates also include potential incremental quantities associated with a greater percentage recovery of the hydrocarbons in place than assumed for proved reserves.
 - (iv) See also guidelines in paragraphs (a)(17)(iv) and (a)(17)(vi) of this section.
- (19) <u>Probabilistic estimate.</u> The method of estimation of reserves or resources is called probabilistic when the full range of values that could reasonably occur for each unknown parameter

(from the geoscience and engineering data) is used to generate a full range of possible outcomes and their associated probabilities of occurrence.

(20) Production costs.

- (i) Costs incurred to operate and maintain wells and related equipment and facilities, including depreciation and applicable operating costs of support equipment and facilities and other costs of operating and maintaining those wells and related equipment and facilities, they become part of the cost of oil and gas produced. Examples of production costs (sometimes called lifting costs) are:
 - (A) Costs of labor to operate the wells and related equipment and facilities.
 - (B) Repairs and maintenance.
 - (C) Materials, supplies, arid fuel consumed and supplies utilized in operating the wells and related equipment and facilities.
 - (D) Property taxes and insurance applicable to proved properties and wells and related equipment and facilities.
 - (E) Severance taxes.
- (ii) Some support equipment or facilities may serve two or more oil and gas producing activities and may also serve transportation, refining, and marketing activities. To the extent that the support equipment and facilities are used in oil and gas producing activities, their depreciation and applicable operating costs become exploration, development or production costs, as appropriate. Depreciation, depletion, and amortization of capitalized acquisition, exploration, and development costs are not production costs but also become part of the cost of oil and gas produced along with production (lifting) costs identified above.
- (21) <u>Proved area.</u> The part of a property to which proved reserves have been specifically attributed.
- (22) Proved oil and gas reserves. Proved oil and gas reserves are those quantities of oil and gas, which, by analysis of geoscience and engineering data, can be estimated with reasonable certainty to be economically producible—from a given date forward, from known reservoirs, and under existing economic conditions, operating methods, and government regulations—prior to the time at which contracts providing the right to operate expire, unless evidence indicates that renewal is reasonably certain, regardless of whether deterministic or probabilistic methods are used for the estimation. The project to extract the hydrocarbons must have commenced or the operator must be reasonably certain that it will commence the project within a reasonable time.
 - (i) The area of the reservoir considered as proved includes:
 - (A) The area identified by drilling and limited by fluid contacts, if any, and
 - (B) Adjacent undrilled portions of the reservoir that can, with reasonable certainty, be judged to be continuous with it and to contain economically producible oil or gas on the basis of available geoscience and engineering data.
 - (ii) In the absence of data on fluid contacts, proved quantities in a reservoir are limited by the lowest known hydrocarbons (LKH) as seen in a well penetration unless geoscience, engineering, or performance data and reliable technology establishes a lower contact with reasonable certainty.
 - (iii) Where direct observation from well penetrations has defined a highest known oil (HKO) elevation and the potential exists for an associated gas cap, proved oil reserves may be assigned in the structurally higher portions of the reservoir only if geoscience, engineering, or performance data and reliable technology establish the higher contact with reasonable certainty.
 - (iv) Reserves which can be produced economically through application of improved recovery techniques (including, but not limited to, fluid injection) are included in the

proved classification when:

- (A) Successful testing by a pilot project in an area of the reservoir with properties no more favorable than in the reservoir as a whole, the operation of an installed program in the reservoir or an analogous reservoir, or other evidence using reliable technology establishes the reasonable certainty of the engineering analysis on which the project or program was based; and
- (B) The project has been approved for development by all necessary parties and entities, including governmental entities.
- (v) Existing economic conditions include prices and costs at which economic producibility from a reservoir is to be determined. The price shall be the average price during the 12-month period prior to the ending date of the period covered by the report, determined as an unweighted arithmetic average of the first-day-of-the-month price for each month within such period, unless prices are defined by contractual arrangements, excluding escalations based upon future conditions.
- (23) <u>Proved properties.</u> Properties with proved reserves.
- (24) Reasonable certainty. If deterministic methods are used, reasonable certainty means a high degree of confidence that the quantities will be recovered. If probabilistic methods are used, there should be at least a 90% probability that the quantities actually recovered will equal or exceed the estimate. A high degree of confidence exists if the quantity is much more likely to be achieved than not, and, as changes due to increased availability of geoscience (geological, geophysical, and geochemical), engineering, and economic data are made to estimated ultimate recovery (EUR) with time, reasonably certain EUR is much more likely to increase or remain constant than to decrease.
- (25) Reliable technology. Reliable technology is a grouping of one or more technologies (including computational methods) that has been field tested and has been demonstrated to provide reasonably certain results with consistency and repeatability in the formation being evaluated or in an analogous formation.
- (26) Reserves. Reserves are estimated remaining quantities of oil and gas and related substances anticipated to be economically producible, as of a given date, by application of development projects to known accumulations. In addition, there must exist, or there must be a reasonable expectation that there will exist, the legal right to produce or a revenue interest in the production, installed means of delivering oil and gas or related substances to market, and all permits and financing required to implement the project.

Note to paragraph (a)(26): Reserves should not be assigned to adjacent reservoirs isolated by major, potentially sealing, faults until those reservoirs are penetrated and evaluated as economically producible. Reserves should not be assigned to areas that are clearly separated from a known accumulation by a non-productive reservoir (i.e., absence of reservoir, structurally low reservoir, or negative test results). Such areas may contain prospective resources (i.e., potentially recoverable resources from undiscovered accumulations).

- (27) <u>Reservoir.</u> A porous and permeable underground formation containing a natural accumulation of producible oil and/or gas that is confined by impermeable rock or water barriers and is individual and separate from other reservoirs.
- (28) Resources. Resources are quantities of oil and gas estimated to exist in naturally occurring accumulations. A portion of the resources may be estimated to be recoverable, and another portion may be considered to be unrecoverable. Resources include both discovered and undiscovered accumulations.
- (29) <u>Service well.</u> A well drilled or completed for the purpose of supporting production in an existing field. Specific purposes of service wells include gas injection, water injection, steam injection, air injection, salt-water disposal, water supply for injection, observation, or injection for insitu combustion.

- (30) <u>Stratigraphic test well.</u> A stratigraphic test well is a drilling effort, geologically directed, to obtain information pertaining to a specific geologic condition. Such wells customarily are drilled without the intent of being completed for hydrocarbon production. The classification also includes tests identified as core tests and all types of expendable holes related to hydrocarbon exploration. Stratigraphic tests are classified as "exploratory type" if not drilled in a known area or "development type" if drilled in a known area.
- (31) <u>Undeveloped oil and gas reserves.</u> Undeveloped oil and gas reserves are reserves of any category that are expected to be recovered from new wells on undrilled acreage, or from existing wells where a relatively major expenditure is required for recompletion.
 - (i) Reserves on undrilled acreage shall be limited to those directly offsetting development spacing areas that are reasonably certain of production when drilled, unless evidence using reliable technology exists that establishes reasonable certainty of economic producibility at greater distances.
 - (ii) Undrilled locations can be classified as having undeveloped reserves only if a development plan has been adopted indicating that they are scheduled to be drilled within five years, unless the specific circumstances, justify a longer time.
 - (iii) Under no circumstances shall estimates for undeveloped reserves be attributable to any acreage for which an application of fluid injection or other improved recovery technique is contemplated, unless such techniques have been proved effective by actual projects in the same reservoir or an analogous reservoir, as defined in paragraph (a)(2) of this section, or by other evidence using reliable technology establishing reasonable certainty.
- (32) <u>Unproved properties.</u> Properties with no proved reserves.

Appendix II
Technical Qualifications of Person Responsible for Audit

Statement of Qualification

Dr. John W. Barker

Dr. John Barker is a Technical Director with Gaffney, Cline & Associates (GCA) in the UK and was responsible for overseeing the preparation of the audit. Dr. Barker has over 30 years of international industry experience as a reservoir engineer, both in major oil companies and in consulting. He has worked on conventional oil, gas and gas condensate fields of all types in many different parts of the world, including naturally fractured reservoirs and enhanced oil recovery projects, and also on some tight gas and heavy oil fields. He is an acknowledged expert in all aspects of reservoir simulation and has extensive experience in estimation, auditing and reporting of reserves and resources.

Dr. Barker is a former Executive Editor of the SPE Reservoir Engineering journal, and has authored 34 technical publications, of which 20 have appeared in peer reviewed journals. He holds an M.A. in Mathematics from the University of Cambridge and a Ph.D. in Applied Mathematics from the California Institute of Technology. He is a member of the Society of Petroleum Engineers and of the Society of Petroleum Evaluation Engineers.