Sampling techniques |
· Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. |
· Reverse circulation (HQ size) samples were taken on either 1 intervals for pegmatite or 4m composites in surrounding schist. RC samples were collected in large plastic bags from an on-board rig splitter and a 4-6kg representative sample taken for analysis. |
|
· Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. |
· Drilling was conducted on a nominal 80m by 40m spacing based on geological targets using RC drilling technology, an industry standard drilling technique. Drilling rods are 3m long and 1 sample is taken for each rod interval. · Collar surveys are carried using hand held GPS with an accuracy to within 5m, and the z direction was determined by satellite derived elevation data and is accurate to less than a metre. · A downhole survey for each hole was completed. |
|
· Aspects of the determination of mineralisation that are Material to the Public Report. · In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. |
· The lithium mineralization is predominantly in the form of Spodumene-bearing pegmatites, the pegmatites are unzoned and vary in thickness from 15m-39m. · Down hole sampling is carried out on either a 1 or 4m interval from which 4-6kg of pulverized material (RC) was pulverized to produce a 50g charge for assaying. |
Drilling techniques |
· Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). |
· RC drilling at a diameter of 120mm is a form of reverse circulation drilling requiring annular drill rods. Compressed air is pumped down the outer tube and the sample is collected from the open face drilling bit and blown up the inner tube. |
Drill sample recovery |
· Method of recording and assessing core and chip sample recoveries and results assessed. |
· Field assessment of sample volume. A theoretical dried sample mass was estimated to be within the range of 18 kg to 24 Kg, 70% of samples are within the expected range. Lower than average sample recovery is recorded only for the very top of the drill hole due to air and sample losses into the surrounding soil. |
|
· Measures taken to maximise sample recovery and ensure representative nature of the samples. |
· RC drilling sample weights were monitored to ensure samples were maximized. Samples were carefully loaded into a splitter and split in the same manner ensuring that the sample split to be sent to the assay laboratories were in the range of 4-6kg. |
|
· Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. |
· No obvious relationships. |
Logging |
· Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. · Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. · The total length and percentage of the relevant intersections logged. |
· RC holes were logged in the field at the time of sampling. · Each 1m sample interval was carefully homogenized and assessed for lithology, colour, grainsize, structure and mineralization. · A representative chip sample produced from RC drilling was washed and taken for each 1m sample and stored in a chip tray which was photographed. |
Sub-sampling techniques and sample preparation |
· If core, whether cut or sawn and whether quarter, half or all core taken. · If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. |
· RC samples were split by the rotary splitter on the drill rig and sampled dry. |
|
· For all sample types, the nature, quality and appropriateness of the sample preparation technique. |
· The sampling was conducted using industry standard techniques and were considered appropriate. |
|
· Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. |
· The 4m composites were collected using a spear with the spear inserted into the bag at a high angle and pushed across the sample to maximise representivity of the sample. |
|
· Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling. |
· Every effort was made to ensure that the samples were representative and not bias in anyway. |
|
· Whether sample sizes are appropriate to the grain size of the material being sampled. |
· All samples were taken once they went through the on-board splitter from the drill rig. Depending on the rock types on average a 4-6kg sample was sent to the lab for analysis and the remaining material averaged 18-24kg and remains stored on site for any further analysis required. |
Quality of assay data and laboratory tests |
· The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. |
· Samples were received, sorted, labelled and dried. · Samples were crushed to 70% less than 2mm, riffle split off 250g, pulverize split to better than 85% passing 75 microns and 5g was split of for assaying. · The samples were analysed using ALS laboratories ME-MS89L Super Trace method which combines a sodium peroxide fusion with ICP-MS instrumentation utilizing collision/reaction cell technologies to provide the lowest detection limits available. · A prepared sample (0.2g) is added to sodium peroxide flux, mixed well and then fused in at 670°C. The resulting melt is cooled and then dissolved in 30% hydrochloric acid. This solution is then analysed by Inductively Coupled Plasma - Mass Spectrometry and the results are corrected for spectral inter-element interferences. · The final solution is then analysed by ICP-MS, with results corrected for spectral inter-element interferences. |
|
· For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. |
· Not used. |
|
· Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. |
· Standards/blanks and duplicates we inserted on a 1:20 ratio for both to samples taken. · Duplicate sample regime is used to monitor sampling methodology and homogeneity. · A powder chip tray for the entire hole is completed for both RC and RAB. A sub-sample is sieved from the large RC bags at site into chip trays over the pegmatite interval to assist in geological logging. These are photographed and kept on the central database. · Routine QA/QC controls for the method ME-MS89L include Blanks, certified reference standards of Lithium and duplicate samples. Samples are assayed within runs or batches up to 40 samples. At the fusion stage that quality control samples are included together with the samples so all samples follow the same procedure until the end. Fused and diluted samples are prepared for ICP-MS analysis. ICP instrument is calibrated through appropriate certified standards solutions and interference corrections to achieve strict calibration fitting parameters. Each 40 samples run is assayed with 2 blanks, 2 certified standards and one duplicate samples and results are evaluated accordingly. · A QA/QC review of all information indicated that all assays were inside reasonable tolerance levels. |
Verification of sampling and assaying |
· The verification of significant intersections by either independent or alternative company personnel. |
· All information was internally audited by company personnel. |
|
· The use of twinned holes. |
· Several historical holes we twinned for comparison purposes with the modern drilling. |
|
· Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. |
· Savannah's experienced project geologists supervise all processes. · All field data is entered into a custom log sheet and then into excel spreadsheets (supported by look-up tables) at site and subsequently validated as it is imported into the centralized Access database. · Hard copies of logs, survey and sampling data are stored in the local office and electronic data is stored on the main server. |
|
· Discuss any adjustment to assay data. |
· Results were reported as Li(ppm) and were converted to a percentage by dividing by 10,000 and then to Li2O% by multiplying by 2.153 |
Location of data points |
· Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. · Specification of the grid system used. · Quality and adequacy of topographic control. |
· The coordinate of each drill hole was taken at the time of collecting using a handheld GPS with an accuracy of 5m. · The grid system used is WSG84 · Topographic accuracy was +/- 5m |
Data spacing and distribution |
· Data spacing for reporting of Exploration Results. · Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. · Whether sample compositing has been applied. |
· Drilling was on a nominal 80m by 40m spacing and based on geological targets. · Drill data is not currently at sufficient spacing to define a mineral resource. · Some samples were composited on a 4m basis based on geological criteria, these areas were all outside the pegmatite bodies where 1m sampling was completed. |
Orientation of data in relation to geological structure |
· Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. · If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. |
· Drilling was orientated perpendicular to the known strike of the pegmatites. · Drill holes we orientated at either -60 degrees or -90 degrees depending on the dip of the pegmatite in an attempt to get drill holes as close to true width as possible. |
Sample security |
· The measures taken to ensure sample security. |
· Samples were delivered to a courier and chain of custody is managed by Savannah. |
Audits or reviews |
· The results of any audits or reviews of sampling techniques and data. |
· Internal company auditing. |